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Fair Polyline Networks for Constrained Smoothing
of Digital Terrain Elevation Data

Michael Hofer, Guillermo Sapiro,Senior Member, IEEE,and Johannes Wallner

Abstract— We present a framework for smoothing grid-like
digital terrain elevation data, which achieves fair shape by
means of minimizing an energy functional. The minimization
is performed under the side-condition of hard constraints which
come from available horizontal and vertical accuracy bounds
in the elevation specification. We introduce the framework and
demonstrate the suitability of this method for the tasks of
accuracy-constrained smoothing, feature-preserving smoothing,
and filling of data voids.

Index Terms— Digital terrain elevation data (DTED), surface
smoothing, fair polyline networks, guaranteed error bounds,
topography preserving.

I. I NTRODUCTION

SMOOTHING digital terrain elevation data (DTED) with
guaranteed error bounds and feature preservation is of

great importance in practical geoscience tasks, both for visu-
alization purposes and for post-processing (e.g., compression).

A typical data set we are working with is depicted in Fig. 1.
We see that the iso-height contours are often jagged, and false
contours appear (small “islands”). This is due in part to the
high level of detail present in the data and in part to data
acquisition and generation limitations. The noisy aspect of the
DTED can also be seen by means of a shaded relief (Fig. 2).
After constrained-smoothing with the technique here proposed,
iso-height contour lines look like those in Fig. 3.

The data we use have been provided by the U.S. National
Geospatial-Intelligence Agency (NGA). The data have been
obtained by the Shuttle Radar Topography Mission (SRTM)
in February 2000, one of the most significant space surveys
of earth ever undertaken, see e.g.,http://www2.jpl.nasa.gov/
srtm/ and [1]. SRTM is a joint project between NASA, NGA,
the German Aerospace Center (DLR), and the Italian Space
Agency (ASI). The data complies to the DTED-2 specification,
i.e., is given as a uniform gridded matrix of terrain elevation
values with a spacing of one arc second (approximately 30
meters). The specification also includes information about
absolute errors (or accuracy), both in horizontal as well as in
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Fig. 1. Iso-height contour plot of original elevation data.

Fig. 2. Shaded relief of original data.

Fig. 3. Iso-height contour plot of smoothed elevation data.

vertical directions.1 This means that the data includes specific
information about the possible errors in the posts positions
(circular horizontal error) and the reported height (vertical
error). This additional accuracy information is exploited by
our proposed smoothing framework.

1For details on the specification, see for examplehttp://www.fas.org/
irp/program/core/dted.htm. See alsohttp://mountains.ece.umn.edu/∼guille/
dtedspecification.pdffor a copy of the official DTED specification.
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It is of great importance that smoothing digital elevation
data respects the given error bounds. In other words, the
smoothed data must be in between the absolute accuracy
bounds provided by the specification. This is needed in order
to guarantee that the processed data is in the allowed (by the
data specification) height and position range. In this paper
we present an algorithm which does just that, and is also
capable of filling holes as well as preserving features in
a consistent manner. The hard error (or accuracy) bounds
are represented as tolerance cylinders, where the surface is
permitted to move. The smoothing is accomplished by means
of an energy minimization technique (fair polyline network),
constrained to keep the surface inside the tolerance bounds.
Relaxing or limiting the size of the cylinders, void filling and
feature preservation are naturally obtained within the same
framework. The proposed technique can be applied both to
smooth the whole data (as a function on the plane) or singular
iso-height lines.

The remainder of the paper is organized as follows. In
Section II we briefly describe related prior art. Our contri-
butions are put forward in Section III. In Section IV, we first
define fair polyline networks and then discuss the error bounds
and the smoothing procedure. For validation of the algorithm,
we introduce a deviation measure based on a gauge body.
Furthermore, we show that besides smoothing, our algorithm
is also capable of preserving features and filling voids. In
Section V we present experimental results, and in Section VI
we conclude the paper.

II. PREVIOUS WORK

The present paper is motivated by our work on variational
interpolation of subsets [2], on energy-minimizing splines in
manifolds [3], and on fair curve and polyline networks in non-
linear geometries [4], [5]. In the following we review literature
related to surface smoothing, guaranteed error bounds, and
hole filling, with a focus mainly on thegeometry processing
rather than on the geosciences community.

A. Surface smoothing

For data of a surface like terrain, the filtering of noise
and smoothing of the geometry has been of great interest.
Constraints imposed on the smoothing process include the
preservation of linear and non-linear surface features such
as sharp edges, corners, or non-planar curves. This can be
achieved for example using the so-called anisotropic smooth-
ing methods (cf. [6] and [7]) in this area. There are only few
publications where hard error bounds are incorporated into
these geometric regularization methods. Recently, geometric
active contours have been used as the base of a constrained
regularization framework for digital elevation data [8].

B. Error bounds and the tolerance aspect

While there are many contributions concerning error propa-
gation in digital elevation models (see for example [9] and the
references therein), it is apparently difficult to locate previous
work on smoothing of terrain data with guaranteed error

bounds (being the only paper to the best of our knowledge,
our work in [8]). Thus, it is perhaps no coincidence that the
present contribution to this topic has its origin in geometry
processing and geometric modeling. We would also like to
mention that the topic is related totolerance analysis: It is
common to locate imprecisely defined entities in computations
by tolerance zones. The most prominent example of this is
to compute with intervals instead of with real numbers [10],
[11]. Geometric operations with tolerance zones have been
studied later [12]. In that paper, energy-minimizing curves
which interpolate imprecisely defined points (i.e., tolerance
zones) are considered, which is also the topic of [2], and which
is closely related to the problem solved in the present paper.

In the approximation theory literature, the problem of
regularization with constraints has been addressed by Kimel-
dorf and Wahba [13]. They showed how to compute one
dimensional splines with hard vertical-error constraints. While
this elegant approach can easily be extended to higher di-
mensions, it doesn’t include the horizontal freedom given
by the horizontal absolute error. It is also not developed for
the additional geometric constraints that are natural to add
in our framework. The theory oftotal least squares[14]
also addresses the “freedom of motion” of the given data,
both in the vertical and horizontal position. In it’s original
form, although computationally very efficient, the framework
does not provide hard constraints (that is, the error is not
guaranteed to be below the allowed bounds), neither does it
include any kind of explicit regularization or geometric terms.
In order to add these important constraints, the problem has
to be transformed into a variational formulation, much of the
flavor here introduced. The recent work in [15] presents the
problem of level-set estimation as a tree optimization one, with
guaranteed optimality but no guaranteed error bounds.

C. Void filling

It is possible that in some areas, no elevation values are
available – we refer to these void areas as ‘holes.’ There are
various reasons for holes in the data. They can be caused, e.g.,
by occlusion or poor signal returns.

The literature on hole filling algorithms for geometric mod-
els roughly fits in three categories:surface based, volumetric,
and example basedmethods. The article [16] surveys the
literature on the first two approaches up to the year 2002. Ideas
from image inpainting are used in the volumetric approach by
[17]. Filling holes in point set surfaces is also discussed in
[18]. Recently, example based methods have emerged [19]–
[21]. It is interesting to note that the example based approach
is most closely related to a common practice of filling voids
in elevation data: One uses data from alternate sources and
blends them with the data surrounding the void (the ‘fill &
feather method,’ cf. [22], [23]).

III. C ONTRIBUTIONS OF THE PRESENT PAPER

Elevation data of the DTED-2 specification are given as a
height field over a uniform grid in thexy-plane, such that
every data point has horizontal and vertical error (accuracy)
bounds. Fig. 4 shows data pointspij together with their error
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Fig. 4. An initial surface interpolating the given data pointspij . The surface
can be smoothed such that it stays within all tolerance cylindersZij of
radii rij and height2hij . The radii and height are specified with the DTED
information. A different size of the error cylinders can be used to preserve
surface features (e.g., ridges) during the smoothing.

bounds in the form of cylinders of revolutionZij , and an initial
surface that interpolates the given pointspij . The objective is
to compute a smooth surface that stays within the given error
margins dictated by the cylinders.

The framework we propose views the height field over
the xy-plane as a network consisting ofx-parallel andy-
parallel polylines, as shown by Fig. 5. We perform smoothing
by minimizing a discrete bending energy of these polylines,
always respecting the error bounds. Our framework is very
flexible and allows e.g., to use individual error bounds for
every data point, fill voids in the data, or smooth only a subset
of the data for feature preservation. We later illustrate this at
hand of several examples.

IV. FAIR POLYLINE NETWORKS FOR TERRAIN SMOOTHING

WITH GUARANTEED ERROR BOUNDS

We first define fair polyline networks and then we show
how to extend them for smoothing of digital terrain elevation
data with guaranteed error bounds.

A. Fair polyline networks

Our smoothing procedure is based on minimizing the energy
of a polyline network. We first define the energy of a single
polyline, and then the energy of the polyline network as the
sum of energies of all the polylines that contribute to the
polyline network. For a smooth curvec(t), defined in some
parameter interval[a, b], the linearized bending energy (cubic
spline energy) is defined by

E(c) = ∫ b
a ‖c̈(t)‖2dt. (1)

Its minimizers under interpolation conditions are the cubic
B-spline curves [24]. Apolyline p = (q1,q2, . . . ,qL), as a
discrete curve, possesses a discrete linearized bending energy:

E =
∑L−1

i=2
‖∆2qi‖2, ∆2qi = qi−1 − 2qi + qi+1. (2)

Curve networks and polyline networks, which are the topic
of [4], [5], have energies which are defined as the sum of
the energies of the curves or polylines which they are made

p11
pM1

p1N

pMNpMNpMNpMN
pMNpMN
pMNpMN
pMNpMN
pMNpMN
pMNpMNpMNpMNpMN

pijpijpijpij
pijpij
pijpij
pijpij
pijpij
pijpijpijpijpij

Fig. 5. A polyline network with verticespij and two families of polylines
(solid and dotted) representing a height field.

of. The given elevation data constitute a rectangular array of
points: pij = (xij , yij , zij), (i = 1, . . . ,M , j = 1, . . . , N ).
We define the energy of the data collection to be the sum of
energies of theN different polylines defined byj =const. and
the M different polylines defined byi =const.:

E =
∑N

j=1

∑M−1

i=2
‖pi−1,j − 2pi,j + pi+1,j‖2

+
∑M

i=1

∑N−1

j=2
‖pi,j−1 − 2pi,j + pi,j+1‖2. (3)

A fair polyline network is one which has minimal energy
among all polyline networks which fulfill a fixed set of
constraints.

B. Error bounds

The data sets we use consist of pointspij which are
equally spaced inx andy direction. We might, without loss of
generality, assume thatxij = g · i andyij = g · j, whereg is
the grid element size (approximately 30 meters for DTED-
2). The data points contain errors, both in horizontal and
vertical direction. If maximum horizontal error of a data point
pij is bounded byrij , and the vertical error byhij , then
the true location of that data point is within a cylinderZij

of diameter2rij and height2hij , which is centered in the
given pointpij = (xij , yij , zij).2 Each pointpij is equipped
with its own tolerance cylinderZij (Fig. 6, left). We also
refer to these tolerance cylinders aserror cylinders. They are
hard constraints, which means that the terrain surface we are
seeking has to pass through allZij ’s.

Fig. 6, top right, shows the initial state of the network, only
one polyline is shown as a representative of the surface defined
by the data. Our goal ultimately is to move the pointspij

such that the energy (3) becomes smaller, but the surface still
passes through the cylindersZij . We can achieve this, e.g.,
by requiring that the pointspij themselves do not leaveZij ,
as illustrated by Fig. 6, at right, center. This condition, which
is referred to asOption 1, however, is stricter than actually
necessary. It is certainly sufficient that for each vertexpij ,
one of the two polylines meeting there meetsZij (Fig. 6,
bottom right). This slightly more relaxed condition is referred
to asOption 2.

2Other error/accuracy models will just define different tolerance shapes,
without altering the framework here presented. Cylinders are the appropriate
shape to represent the absolute errors specified with DTED.
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pijpij
pijpij
pijpij
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Zij

initial state

Option 1
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Zij

pij

Fig. 6. Smoothing height fields via fair polyline networks. (Left) Polyline
network with the tolerance cylindersZij associated with the verticespij .
(Right) At top, initial state before optimization. At center, Option 1 of
optimization (all vertices stay inside the tolerance cylinders). At bottom,
Option 2: The vertices are allowed to leave the cylinders, provided the surface
still passes through them.

C. The smoothing procedure

Minimizing the quadratic function (3) of the variables
xij , yij , zij , subject to the constraints mentioned above, is a
quadratic programming problem with non-convex side condi-
tions. It contains too many variables for just submitting it to
a generic optimization procedure as, e.g., provided by math-
ematical software. The following properties however allow a
more direct approach:

(a) If computed withx and y coordinates of the initial
data alone, the energy would be zero, owing to the regular
alignment of initial data. We therefore don’t expect the points
pij to move very much inx or y direction during optimization.
Indeed this is confirmed by numerical experiments.

(b) At each location, the smooth, energy-minimizing terrain,
is defined by the input data which are nearby. Thus there is no
need for globally minimizing the energy over large data sets.

(c) The condition thatpij remains insideZij (Option 1)
leads to a convex optimization problem which has a unique
solution. As illustrated by Fig. 6 (right), the difference between
Option 1 and Option 2 is not very big. This means that the
optimization problem we have to solve when using Option 2 is
‘convex enough’ so that we don’t expect a direct minimization
procedure getting stuck in a local minimum.

In view of property (a), we only use thez coordinates of
the data points as variables for minimization:

E =
∑N

j=1

∑M−1

i=2
(zi−1,j − 2zi,j + zi+1,j)2

+
∑M

i=1

∑N−1

j=2
(zi,j−1 − 2zi,j + zi,j+1)2. (4)

Because of (c), we employ a gradient descent method, with
the original elevation data as initial condition. It is elementary
that the gradient of the energy is given by

(∇E)ij = (zi−2,j + zi+2,j + zi,j−2 + zi,j+2)
− 4(zi−1,j + zi+1,j + zi,j−1 + zi,j+1) + 12zi,j , (5)

provided i, j > 2 and i < M − 1, j < N − 1. For vertices
near the boundary there are different formulae.

Optimization is basically implemented as follows: First, we
find a direction of descent, e.g., by lettinggij := −(∇E)ij .

We consider the 1-parameter variationEt of the energy (4)
defined by thez coordinateszij(t) = zij + t · gij . The
dependence ofE on t is quadratic, so it is easy to find a
parametert = t0 where Et has a minimum. We replace
zij by zij + t0 · gij , but vertices which have moved too far
(violating the constraints) are pulled back. This procedure
is iterated. Actually the procedure described here is rather
unsophisticated. Improvements are the following: (i) Ifpij is
already in a position where it must not move higher because of
the boundary conditions, butgij > 0, we let gij = 0. (ii) the
same with ‘lower’ instead of higher. (iii) As is well known in
multivariate optimization, the direct gradient descent method is
usually not very efficient. We use a conjugate gradient method
for updating the direction of descent in each step. (iv) In view
of the large number of variables, we use a multigrid method
for minimization.

As has already been mentioned, Option 1 leads to a convex
optimization problem, whereas Option 2 leads to a non-convex
one. Numerical experiments however show that no problems
with local minima occur, so the amount of non-convexity
present seems to be low. For numerical optimization in general,
see e.g., [25].

D. Measuring the deviation

In order to measure the deviation of the smoothed surface,
defined by verticesqij , from the original datapij , we use the
tolerance cylindersZij as gauge bodies. When scalingZij

with centerpij , there is a smallest factorλij such that the
scaled cylinder touches the surface defined by the smoothed
data (which means that the scaled cylinder touches either the
x-parallel or they-parallel polylines defined by the smoothed
data). This factorλij equals zero, if the vertexpij has not
moved at all, i.e., ifqij = pij , and the surface passes through
Zij , if λij ≤ 1.

E. Void filling

Missing data may be treated in different ways. There might
be a procedure for filling voids which is appropriate for a
certain application and which is applied before fair polylines
are used for smoothing. It is however worth noting that fair
polylines are also capable of filling voids. Ifzij is unknown,
we first attempt a crude guess at it (any method for filling
voids is sufficient for that), and endow the vertexpij with
a large tolerance cylinderZij , so that the vertex can move
(more) freely during optimization.

V. EXPERIMENTAL RESULTS

All data sets described below are conforming to the DTED-
2 standard, with a post spacing of 1 arc second. The horizontal
and vertical error margins are13 and 5 meters, resp., for all
vertices. This means that after smoothing the surface must pass
through vertically oriented tolerance cylinders of base diameter
26 m and height 10 m centered in the individual data points.
The size of those cylinders here is the same for all points,
except for those where no height data are available. Such
points get a large tolerance cylinder, so that they can move
freely. We implemented the smoothing procedure inC++ and
usedMatlab to generate iso-height contour lines.
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A. Example 1

This data set has a size of800× 600 posts and is shown in
Fig. 7 as a shaded relief. It represents an area of approximately
24×18 km. The original data set has elevation values between
zmin =339 m andzmax = 1103 m, and the smoothed data set
has elevation values betweenzmin = 337.5 m and zmax =
1098 m. Details of this example have already been used for
illustration in Figures 1, 2, and 3.

In order to analyze the asymptotic behavior of the energy
minimization, we run much more iterations than necessary in
actual applications. The behavior of the network energy using
smoothing Option 2 is:

# iterations 0 10 100 1000
Energy 4817 727 628 623

Fig. 8 shows a histogram of vertex movements measured by
means of the tolerance cylinders as gauge bodies (cf. Section
IV-D). The amount of points whose movement is a certain
percentage of the maximum possible movement is decreasing
from left to right, as only to be expected. It is interesting to
note that a substantial number of points actually move as far
as possible in order to minimize energy. This is clearly seen
by the height of the bar at the extreme right.

Fig. 9 illustrates the movement of vertices during the
smoothing process. The height difference in meters is coded
as a grey value. The dark lines show valleys, which during
smoothing are lifted, whereas the light areas show ridges,
where the smooth terrain is lower than the original one. In both
cases, the deviation of the smoothed terrain from the original
one is always consistent with the specified error/accuracy
bounds.

B. Example 2

Our second example demonstrates the difference between
the two options mentioned in Section IV-B. Option 1 keeps
the data points inside the tolerance cylinders, whereas Option 2
ensures that the surface passes through the tolerance cylinders,
but allows the verticespij to leave the respective cylinders
Zij . The results of smoothing are visualized in Fig. 11.
Minimal elevation values for the original data set, and the two
smoothed data sets are431.00 m, 427.28 m, and426.00 m, re-
spectively. Maximum elevation values are724.00 m, 723.27 m,
and723.27 m.

While the general effect of smoothing is clearly visible
in the contour plots for both options (see Fig. 11(a)–(c)), it
is hard to see any difference between options 1 and 2. The
effect that vertices may move outside their tolerance cylinder
is strongest where the terrain is steep. In flatter areas, the
vertices cannot move away much from the boundary of the
tolerance cylinder. This means that the maximum deviation of
the smoothed terrain from the original occurs in those areas
where the terrain is steep. In this example, this happens only
in small parts of the data set. Figures 10(a) and 10(b) illustrate
this deviation, where the absolute value of deviation is encoded
in grey values: Maximum deviation is black, minimum is
white.

The fact that Option 2 causes deviation peaks in small areas
causes Fig. 10(b) to look lighter than Fig. 10(a), even if the

Fig. 7. Data set of Example 1 before (top) and after (bottom) smoothing.

0 1

Fig. 8. Vertex movement histogram for Example 1.

Fig. 9. Vertex movement visualization for Example 1.
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Fig. 10. The data set of Example 2. From left: Deviation of smoothed data (Option 1) from original; Deviation of smoothed data (Option 2) from original;
Difference between two options of smoothing; Vertex movement histogram (Top: Option 1, Bottom: Option 2.).

absolute deviation values are greater in general. Fig. 10(c)
shows the difference between smoothing with Option 1 and
smoothing with Option 2: the absolute value of the height
difference is encoded in grey values (black is maximal devi-
ation). The vertex movement statistics of Fig. 10(d) do not
show absolute height data, but the deviation computed with
the tolerance cylinders as gauge bodies.

C. Example 3

The third example uses a small data set of size217× 181,
which contains several holes (Fig. 12). Before smoothing,
the missingz coordinates have been guessed by a simple
averaging procedure. During smoothing, they are allowed to
move freely. This example illustrates the fact that fair polyline
networks are capable of filling voids in one pass together with
smoothing (Fig. 12(b)).

We are now going to further exploit the great amount of
flexibility which is present in our way of treating constraints.
For instance, features of the terrain which should survive the
smoothing process with greater accuracy than other parts of the
data set can be given smaller tolerance cylinders. An example
of this is given by Fig. 12(c), where smoothing has been
performed with three different cylinder sizes (diameter/height
in meters): 26/10 for most points, 2/1 for the feature marked
in grey, and an infinite size for voids in the data.

The difference between the two different ways of smoothing
is shown by Figures 13. Here absolute values ofz coordinate
differences are encoded as grey values, with white as minimum
and black as maximum. Data voids are also shown in black.
The small movement of vertices in the feature area shows up
as white. A shaded relief of absolute value of the difference
of the two smoothed data sets is shown in Fig. 13(c).

D. Example 4

When working with digital terrain elevation data, one might
want to be able to perform the following two tasks: (a) the
whole data set is smoothed with guaranteed error bounds. On
demand a contour plot of the smoothed terrain is created. (b) a
single smooth contour line at a certain fixed elevationz = H
is extracted from the original terrain data, always respecting
the given error bounds. The first task can be performed by
the algorithm described above and is shown by Examples 1–
3. The second task can be done by the same algorithm which
acts on a subset of the given data defined by the inequality

Fig. 11. The data set of Example 2. From bottom to top: (a) Original data.
(b) Smoothing with Option 1. (c) Smoothing with Option 2.

H1 < z < H2, where[H1,H2] is an interval which contains
the height valueH under consideration and is wide enough to
include the tolerance cylinders.

Figures 14 and 15 illustrate this procedure: We use a data
set of size436 × 263 containing both mountainous and flat
regions betweenzmin = 1894 m and zmax = 3033 m. We
pick the 2212 m contour for smoothing. The regionH1 <
z < H2 with H1 = 2192 m andH2 = 2232 m is shown in
Fig. 14(c). The result of smoothing is shown in Fig. 15(a).
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Fig. 12. The data set of Example 3. From left: (a) Original data. (b) After filling voids and smoothing. (c) After filling voids and smoothing, with features
preserved.

Fig. 13. The data set of Example 3. From left: (a) Height differences between original and smoothed data. (b) Height differences between original and
smoothed data, with features preserved. (c) Difference between the two smoothed data sets (with and without features preserved).

Fig. 14. The data set of Example 4. From left: (a) Contour lines. (b) Shaded relief with single contour (in white) atz = 2212 m. (c) A neighborhood of
that contour defined by contour lines at2192 m and2232 m.

Fig. 15. The data set of Example 4. From left: (a) Smoothing the 2212 m contour by smoothing a neighborhood. (b) Smoothed whole data set with its
corresponding 2212 m contour. (c) Deviation from original data when smoothing a neighborhood of a single contour (shaded relief).

For comparison we have also smoothed the whole data set
and show its corresponding2212 m contour in Fig. 15(b). In
Fig. 15(c) we show a shaded relief of the deviation from the
original data when smoothing only a neighborhood of a single
contour.

VI. CONCLUSION

We have presented an framework which uses fair polyline
networks for smoothing digital terrain elevation data with
guaranteed error bounds and feature preservation. The algo-
rithm is capable of smoothing the terrain data with tolerance
cylinders of different sizes. These flexible tolerances have two
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advantages in particular: (i) we can preserve features present
in the data by reducing the size of the tolerance cylinders
in feature areas, (ii) the algorithm can be used to fill holes
present in the original data during the smoothing process.
Single contour lines are smoothed via processing of a small
neighborhood of that contour line.

Another important point we would like to make is that the
smoothing approach here presented easily generalizes from
height fields to more general surfaces, which are becoming
increasingly important in photogrammetry and remote sensing
(see e.g., [26]).
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